比尼奎斯特(FTN)信号更快可以提高光谱效率(SE);然而,以高计算复杂性为代价,以消除引入的隔膜间干扰(ISI)。由ML在物理层(PHY)问题中取得成功的动机,在本文中,我们研究了ML在降低FTN信号传导的检测复杂性方面的使用。特别是,我们将FTN信号检测问题视为一项分类任务,其中接收的信号被视为属于所有可能类样本的一个未标记的类样本。如果我们使用一个偏离分类器,则所有可能的类样本的集合属于$ n $维空间,其中$ n $是传输块长度,具有巨大的计算复杂性。我们提出了一个低复杂分类器(LCC),该分类器(LCC)利用FTN信号的ISI结构来执行$ n_p \ ll n $ dimension空间中的分类任务。拟议的LCC由两个阶段组成:1)离线预先分类,该预先分类在$ n_p $二维空间中构建标记的类样品和2)在线分类,其中发生了接收样品的检测。提出的LCC也会扩展以产生软输出。仿真结果显示了拟议的LCC在平衡性能和复杂性方面的有效性。
translated by 谷歌翻译
Vision transformers have emerged as powerful tools for many computer vision tasks. It has been shown that their features and class tokens can be used for salient object segmentation. However, the properties of segmentation transformers remain largely unstudied. In this work we conduct an in-depth study of the spatial attentions of different backbone layers of semantic segmentation transformers and uncover interesting properties. The spatial attentions of a patch intersecting with an object tend to concentrate within the object, whereas the attentions of larger, more uniform image areas rather follow a diffusive behavior. In other words, vision transformers trained to segment a fixed set of object classes generalize to objects well beyond this set. We exploit this by extracting heatmaps that can be used to segment unknown objects within diverse backgrounds, such as obstacles in traffic scenes. Our method is training-free and its computational overhead negligible. We use off-the-shelf transformers trained for street-scene segmentation to process other scene types.
translated by 谷歌翻译
In this research, we are about to present an agentbased model of human muscle which can be used in analysis of human movement. As the model is designed based on the physiological structure of the muscle, The simulation calculations would be natural, and also, It can be possible to analyze human movement using reverse engineering methods. The model is also a suitable choice to be used in modern prostheses, because the calculation of the model is less than other machine learning models such as artificial neural network algorithms and It makes our algorithm battery-friendly. We will also devise a method that can calculate the intensity of human muscle during gait cycle using a reverse engineering solution. The algorithm called Boots is different from some optimization methods, so It would be able to compute the activities of both agonist and antagonist muscles in a joint. As a consequence, By having an agent-based model of human muscle and Boots algorithm, We would be capable to develop software that can calculate the nervous stimulation of human's lower body muscle based on the angular displacement during gait cycle without using painful methods like electromyography. By developing the application as open-source software, We are hopeful to help researchers and physicians who are studying in medical and biomechanical fields.
translated by 谷歌翻译
We outline our work on evaluating robots that assist older adults by engaging with them through multiple modalities that include physical interaction. Our thesis is that to increase the effectiveness of assistive robots: 1) robots need to understand and effect multimodal actions, 2) robots should not only react to the human, they need to take the initiative and lead the task when it is necessary. We start by briefly introducing our proposed framework for multimodal interaction and then describe two different experiments with the actual robots. In the first experiment, a Baxter robot helps a human find and locate an object using the Multimodal Interaction Manager (MIM) framework. In the second experiment, a NAO robot is used in the same task, however, the roles of the robot and the human are reversed. We discuss the evaluation methods that were used in these experiments, including different metrics employed to characterize the performance of the robot in each case. We conclude by providing our perspective on the challenges and opportunities for the evaluation of assistive robots for older adults in realistic settings.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
In post-covid19 world, radio frequency (RF)-based non-contact methods, e.g., software-defined radios (SDR)-based methods have emerged as promising candidates for intelligent remote sensing of human vitals, and could help in containment of contagious viruses like covid19. To this end, this work utilizes the universal software radio peripherals (USRP)-based SDRs along with classical machine learning (ML) methods to design a non-contact method to monitor different breathing abnormalities. Under our proposed method, a subject rests his/her hand on a table in between the transmit and receive antennas, while an orthogonal frequency division multiplexing (OFDM) signal passes through the hand. Subsequently, the receiver extracts the channel frequency response (basically, fine-grained wireless channel state information), and feeds it to various ML algorithms which eventually classify between different breathing abnormalities. Among all classifiers, linear SVM classifier resulted in a maximum accuracy of 88.1\%. To train the ML classifiers in a supervised manner, data was collected by doing real-time experiments on 4 subjects in a lab environment. For label generation purpose, the breathing of the subjects was classified into three classes: normal, fast, and slow breathing. Furthermore, in addition to our proposed method (where only a hand is exposed to RF signals), we also implemented and tested the state-of-the-art method (where full chest is exposed to RF radiation). The performance comparison of the two methods reveals a trade-off, i.e., the accuracy of our proposed method is slightly inferior but our method results in minimal body exposure to RF radiation, compared to the benchmark method.
translated by 谷歌翻译
We study critical systems that allocate scarce resources to satisfy basic needs, such as homeless services that provide housing. These systems often support communities disproportionately affected by systemic racial, gender, or other injustices, so it is crucial to design these systems with fairness considerations in mind. To address this problem, we propose a framework for evaluating fairness in contextual resource allocation systems that is inspired by fairness metrics in machine learning. This framework can be applied to evaluate the fairness properties of a historical policy, as well as to impose constraints in the design of new (counterfactual) allocation policies. Our work culminates with a set of incompatibility results that investigate the interplay between the different fairness metrics we propose. Notably, we demonstrate that: 1) fairness in allocation and fairness in outcomes are usually incompatible; 2) policies that prioritize based on a vulnerability score will usually result in unequal outcomes across groups, even if the score is perfectly calibrated; 3) policies using contextual information beyond what is needed to characterize baseline risk and treatment effects can be fairer in their outcomes than those using just baseline risk and treatment effects; and 4) policies using group status in addition to baseline risk and treatment effects are as fair as possible given all available information. Our framework can help guide the discussion among stakeholders in deciding which fairness metrics to impose when allocating scarce resources.
translated by 谷歌翻译
Different types of mental rotation tests have been used extensively in psychology to understand human visual reasoning and perception. Understanding what an object or visual scene would look like from another viewpoint is a challenging problem that is made even harder if it must be performed from a single image. We explore a controlled setting whereby questions are posed about the properties of a scene if that scene was observed from another viewpoint. To do this we have created a new version of the CLEVR dataset that we call CLEVR Mental Rotation Tests (CLEVR-MRT). Using CLEVR-MRT we examine standard methods, show how they fall short, then explore novel neural architectures that involve inferring volumetric representations of a scene. These volumes can be manipulated via camera-conditioned transformations to answer the question. We examine the efficacy of different model variants through rigorous ablations and demonstrate the efficacy of volumetric representations.
translated by 谷歌翻译
The Universal Feature Selection Tool (UniFeat) is an open-source tool developed entirely in Java for performing feature selection processes in various research areas. It provides a set of well-known and advanced feature selection methods within its significant auxiliary tools. This allows users to compare the performance of feature selection methods. Moreover, due to the open-source nature of UniFeat, researchers can use and modify it in their research, which facilitates the rapid development of new feature selection algorithms.
translated by 谷歌翻译
With advanced imaging, sequencing, and profiling technologies, multiple omics data become increasingly available and hold promises for many healthcare applications such as cancer diagnosis and treatment. Multimodal learning for integrative multi-omics analysis can help researchers and practitioners gain deep insights into human diseases and improve clinical decisions. However, several challenges are hindering the development in this area, including the availability of easily accessible open-source tools. This survey aims to provide an up-to-date overview of the data challenges, fusion approaches, datasets, and software tools from several new perspectives. We identify and investigate various omics data challenges that can help us understand the field better. We categorize fusion approaches comprehensively to cover existing methods in this area. We collect existing open-source tools to facilitate their broader utilization and development. We explore a broad range of omics data modalities and a list of accessible datasets. Finally, we summarize future directions that can potentially address existing gaps and answer the pressing need to advance multimodal learning for multi-omics data analysis.
translated by 谷歌翻译